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What is it for?
What is it?
How do | implement it?

What are the applications?
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Can be for interface dynamics, geometrically based motions, etc.

Want:

[1 Good marriage with geometry
[1 Painless topological changes

[1 Efficient algorithms and good theory
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Overview

e Level Set Methods consist of

— Data representation: closed curves, surfaces, and sets, quantities on
surfaces

— Dynamics: moving curves, surfaces, and sets, changing quantities de-
fined on surfaces
— Numerical methods: finite difference methods

e \What can level set do for you?

— Fix a surface, tracking quantities around or on it
— Tracking quantities around or on moving surfaces

e \What can’t conventional level set methods do, YET?



What else is there?

Phase field method

Segment projection method (Engquist, Tornberg)

DSE (Dynamic surface extension) (Steinhoff)

Front tracking

VOF (Volume of fluid)

Recent work: Particle level set method (Enright-Fedkiw)



Where to find references and recent progress

The original paper: Osher-Sethian [1988]

Book: Osher-Fedkiw, Springer 2002

UCLA’s CAM Report website: http://www.math.ucla.edu/applied/cam/
Stanford CS group: http://www.cs.stanford.edu/~fedkiw

UC Berkeley’s math website



Level Set for data representation

e Closed curves in R? and surfaces in R, and in general, codimension 1

objects, [, and regions enclosed Q.

e Implicit: [ is defined as the kernel of a Lipschitz continuous function @; i.e.

M ={(xy) € R:q(xy) =0}
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e Objects with higher codimensions (LT Cheng et al.)

e More complicated curves and regions. E.g. open curves (OCKHT,
Smereka), multiple phases (Zhao, Vese-Chan)



Extraction of geometrical informations

Normals: +[lg/|Cg
Mean curvature: [1-n= [ (Lo/|Cg))

Volume enclosed:

/H(—(p(x))dx:/ 1dx

Q X{p<0}

Surface Integral:
|.8(@)0gidx



In real life...

Geometrical quantities approximated by finite differences and numerical
guadratures on a locally uniform grid.



Higher codimension objects



Curves in R®

Path integral: [, f(X)0(@)d(W) | x Up|dx
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Open or non-simple curves in ~ R?

Ref. Osher-Cheng-Kang-Shim-Tsali, J. of Comput. Phys. 2002.
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More complicated example
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Somewhat extreme example

A 2D surface in 5D, represented by

(Xla"' 7)(5) :O}

=0,

Xy -- 7X5)

(

Y

=0

)

X5

Y

(pl<le e

{(Xla - 7)(5)
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Playing with quantities defined on surfaces

Ref: LT Cheng’s Thesis, Bertalmio, Cheng, Sapiro
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Set operations

A={p<0}, B={yp <0},

union: AUB = {@< 0 or Y < 0} = {min(g,yP) < 0}
intersection: AN\B={p< 0 andy < 0} = {max(@, ) < 0}
subtractions: A\ B = {@< 0 andy > O0}={max @, —y) < 0}

complements: A°={@> 0} = {—@ < 0}.

Va4
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A closer look

Subtractions: A\ B = {@ < 0 andy > O0}={max(@, ) < 0}
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More example

-0.5

05

0.5

0.5

17



How do | see the surfaces

e MATLAB: contour, isosurface

e Other tools: VTK, IBM OpenDx, ray tracer

e NPR: non-photo-realistic rendering, see e.g. Zorin
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Dynamics — tracking the motion of an interfaces

e Motions governed by PDEs, mostly of Hamilton-Jacobi type

— derivatives have jumps, need to handle with care

e Topological changes

Can also prevent topological changes. (T. Cecil)
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e Self-interpolating properties of the PDE approach
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e Self-interpolating properties of the PDE approach

General algorithm

Discretizations

Equations

Theory

20



Example
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General Level Set algorithm

See the back of your shampoo bottle: apply shampoo/conditioner,
lather, rinse and repeat

22



General Level Set algorithm

See the back of your shampoo bottle: apply shampoo/conditioner,
lather, rinse and repeat

1. (Re)Initialize @ (if necessary)
2. Extend v, to the whole computational domain (if necessary)

3. Discretize and evolve
@ + Vvo|Og| = 0.

4. Repeat



The Main Equation
(How to Move a Curve implicitly?)

y(t) = (x(),y(t)), @(y(t),t) =0 forallt.

d
= 2 0=a D) +Y(1) Ty t) =0

only valajrony(t)!!

23



The Main Equation
(How to Move a Curve implicitly?)

y(t) = (x(),y(t)), @(y(t),t) =0 forallt.

d

4

only valajrony(t)!!

0.

— (Pi(xa yvt) +V(X7 yvt) ’ DX,y(p(xa yat)

V need to be defined on the whole domain!
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Key Equations

e 0 +V-Up=0.

o @+Vp|U@p =0, v=vi+wT
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Key Equations
e @ +V-Up=0.
o @+ Vy|/lUp =0, v=vii+wT
In general,

@ = _H(Xayata D(P)
H determines how the value of @ should change in time.
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Homogeneity

Again, the general equation:

@ +H(x,Og) =0.

A nice property to have:
H (X, AO@) = £APH (x, Og@).

In particular, p = 1. This translates into: motion is invariant under scaling of
the level set functions.

Eg. TV denoising and mean curvature motion:
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Velocity extension

Need to define v, throughout the computational domain.

[w-Oe=0 BC: wgivenonl.

Quantities do not change in the direction of the gradient LIg; w is constant
along the characteristics.

This can be solved by time iterations or the “generalized closest point
method” (R. Tsai, JCP 178, 2001)
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Building/Re-shaping the level set function (1)

e From explicit surfaces (triangulation etc) to distance functions: e.g. Tsali
JCP 178, 2002

e Given (m, want to keep its zero level set unchanged.
— Solve the Eikonal equation:
0@l =1, BC: 9= 0 wherevery =0,
See e.g. The fast sweeping methods: Tsai et al (SINUM 2002), Kao
et al. Fast marching method (Tsitsiklis 1995, Sethian 1996, Sethian-

Vladimirsky 2002)
— Solve the distance reinitialization equation:

@ +sgn(@)(|0e —1) =0, @(x,t =0)=@(X).
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Building/Re-shaping the level set function (2)

Large and small gradients in @ create numerical instability and resolution
Issues.

@ +sgn@)(|He —1) =0, ¢(x,t=0)=@(x).
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What really happens computationally...

@ = —H(X,y,t, @) solved numerically on the grid.
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Discretization (1)

1. Approximation of derivatives:

U —Ui—1 U1 — U
Ux P- = D)iUi — AX P+ = Di(|—ui — AX -
_ Uir1— 2Ui + U1

AX?
Higher order ENO type approximation: [p_, p.| =wend,i, |)

)
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Discretization (1)

1. Approximation of derivatives:

Ui — U1 Ui+1— U

U : p_=D"u = Ay p. =Dlu = .
Uinq— 2U; + Ui_1
U : D*D*uj= - Sy

AX?
Higher order ENO type approximation: [p_, p.| =wend,i, |)

2. Approximation of the Hamiltonian H () by different fluxes:

H((Q() ~ |:|<p—7 p+)
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Discretization (2)

e Upwinding: the Godunov Hamiltonian H® for @ + v, (X) /@2 is

v/maxmax(p-,0)2,min(p;,0)?) vy >0
v/maxmin(p_,0)2,maxp.,0)2) otherwise

H®(p_, p) —vn-{

The form of H® changes according to the H at hand. Bardi-Osher, SIAM
J. Math. Anal. 1991.
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Discretization (2)

e Upwinding: the Godunov Hamiltonian H® for @ + v, (X) /@2 is

v/maxmax(p-,0)2,min(p;,0)?) vy >0
v/maxmin(p_,0)2,maxp.,0)2) otherwise

H®(p_, p) —vn-{

The form of H® changes according to the H at hand. Bardi-Osher, SIAM
J. Math. Anal. 1991.

e Local Lax-Friedrichs H--F:

+p.. 1
p+2p ) — S0 (P4, P-) (P — P-),

HLLF(p—7p+):H( 2

where o*((p., P—) = MaXyei(p_.p,) |He(P)|. More diffusive than H®, but
easier to evaluate.
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Discretization (3)

General reference: Osher-Sethian, Osher-Shu, SINUM 1991 , Tadmor et
al.

Monotone, consistent schemes ——- Convergent (viscosity solution)
(Crandall-Lions, 1984)
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Discretization (3)

General reference: Osher-Sethian, Osher-Shu, SINUM 1991 , Tadmor et
al.

Monotone, consistent schemes ——- Convergent (viscosity solution)
(Crandall-Lions, 1984)

Monotone means: for H(p_, p.)

oH
—>0.
ops —
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General Level Set algorithm revisited

. (Re)lnitialize @ (if @is too steep or to flat)

|Og| = 1 with suitable BC OR

@ +sgn@)(|He —1) =0.
. Evaluate and extend Vv, to the whole computational domain (if necessary)

. Discretize (5th order WENO with Godunov or LLF flux) and evolve (TVD
Runge-Kutta)

. Goto 1

33



General Level Set algorithm revisited

1. (Re)Initialize @ (if @is too steep or to flat)
|Ugl = 1 with suitable BC OR
@ +sgn(go) (|Ue| —1) =0.
2. Evaluate and extend Vv, to the whole computational domain (if necessary)

3. Discretize (5th order WENO with Godunov or LLF flux) and evolve (TVD
Runge-Kutta)
@ + Vn|Ug = 0.

4. Goto 1

All computations can be done only in a thin tube {|@| < £}. Local level set
method (Peng et al. JCP 155, 1999)
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Solution theory

Viscosity solution theory: Crandall-Lions, Ishii, Evans, Souganidis, Giga

References:

The original paper of Crandall-Lions (Trans. Amer. Math. Soc. 1983)
Users guide: Crandall et al (Bull. Amer. Math. Soc. V27 (1), 1992)
G. Barles, Springer-Verlag 1993

Bardi, Capuzzo-Dolcetta 1997

Bardi,Crandall, Evans, Soner and Souganidis, 1997

Y. Giga’s new book
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Caveat
U+ H (t,x,u,Du,D?u) =0

e Viscosity solution works only if H is of one sign! Otherwise, discontinuities
may occulr.
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Caveat

U+ H (t,x,u,Du,D?u) =0

e Viscosity solution works only if H is of one sign! Otherwise, discontinuities
may ocCcur.

e H orits arguments, e.g. %, may be to be regularized for computation.

E.g. Wulff flow: @ +H (Ue/|Ug|) = 0.

i ~ et Or tanh(s *p)
p2+82

Which is better?

Ref: Tornberg-Engquist UCLA Cam Report, 2002
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Related computational techniques

WENO (Jiang-Peng, SIAM J. Sci. Comput., 2000)

Central Scheme for HJ (Lin-Tadmor, SIAM J. Sci. Comput, 2000)
Osher-Shu SIAM J. Numer. Anal. 1993

Generalized closest point methods (Tsai, JCP 2002)

Fast Sweeping Methods (Tsai et al SINUM 2002, Kao et al.)

Fast marching method (Tsitsiklis 1995, Sethian 1996, Sethian-Vladimirsky
2002)
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Fields of applications

Image sciences

Computer graphics and computer vision
Materials sciences

Optimal control

Geometrical optics

Theoretical sides

Inverse problems

And many more ...
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A simple movie
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Challenges

High dimension computation
Multiphase calculation

Solution theory for general Hamilton-Jacobi equations
(Ref. Ishii, Giga, Tsai-Osher-Giga, Math Comp. 2002)

Solution theory for system of Hamilton-Jacobi equations
(Ref. Burchard, Color TV image restoration, UCLA CAM Report)

Theory for higher order equations
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